Absence of Wave Packet Diffusion in Disordered Nonlinear Systems
نویسندگان
چکیده
منابع مشابه
Absence of wave packet diffusion in disordered nonlinear systems.
We study the spreading of an initially localized wave packet in two nonlinear chains (discrete nonlinear Schrödinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial conditions such that the second moment of the norm and energy density distributions diverges with time. We find that the participation number of a wave packet does not diverge simultaneo...
متن کاملNonlinear wave-packet dynamics in a disordered medium.
We develop an effective theory of pulse propagation in a nonlinear and disordered medium in two dimensions. The theory is formulated in terms of a nonlinear diffusion equation. Despite its apparent simplicity this equation describes novel phenomena which we refer to as "locked explosion" and diffusive collapse. The equation can be applied to such distinct physical systems as laser beams propaga...
متن کاملUniversal spreading of wave packets in disordered nonlinear systems.
In the absence of nonlinearity all eigenmodes of a chain with disorder are spatially localized (Anderson localization). The width of the eigenvalue spectrum and the average eigenvalue spacing inside the localization volume set two frequency scales. An initially localized wave packet spreads in the presence of nonlinearity. Nonlinearity introduces frequency shifts, which define three different e...
متن کاملStatistics of wave interactions in nonlinear disordered systems.
We study the properties of mode-mode interactions for waves propagating in nonlinear disordered one-dimensional systems. We focus on (i) the localization volume of a mode which defines the number of interacting partner modes, (ii) the overlap integrals which determine the interaction strength, (iii) the average spacing between eigenvalues of interacting modes, which sets a scale for the nonline...
متن کاملKam Tori and Absence of Diffusion of a wave-Packet in the 1D Random Dnls Model
When nonlinearity is added to an infinite system with purely discrete linear spectrum, Anderson modes become coupled with one another by terms of higher order than linear, allowing energy exchange between them. It is generally believed, on the basis of numerical simulations in such systems, that any initial wave-packet with finite energy spreads down chaotically to zero amplitude with second mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2008
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.100.084103